Exercise 6

Find the area of a triangle bounded by the x-axis, the line $f(x)=12-\frac{1}{3} x$, and the line perpendicular to $f(x)$ that passes through the origin.

Solution

Start by writing equations of the lines that are given. The equation for the x-axis is $y=0$, $y=12-\frac{1}{3} x$ is given, and the line perpendicular to $f(x)$ has the negative reciprocal slope (3) with an equation given by the point-slope formula.

$$
\begin{gathered}
y-0=3(x-0) \\
y=3 x
\end{gathered}
$$

Now graph all of them.

The area of the triangle is half the product of the base and height.

$$
A=\frac{1}{2} b h=\frac{1}{2}(36)\left(\frac{54}{5}\right)=\frac{972}{5} .
$$

The point of intersection at the top is found by setting the top two functions of x equal to each other and solving for x.

$$
\begin{aligned}
& 3 x=12-\frac{1}{3} x \\
& 3 x+\frac{1}{3} x=12 \\
& \frac{10}{3} x=12 \\
& x=\frac{36}{10}=\frac{18}{5}
\end{aligned}
$$

Plug this value of x into either of the two functions to determine the corresponding y-value.

$$
y=3\left(\frac{18}{5}\right)=\frac{54}{5}
$$

This means the intersection point at the top is $\left(\frac{18}{5}, \frac{54}{5}\right)$. The point of intersection at the bottom right is found similarly by setting the bottom two functions of x equal and solving for x.

$$
\begin{gathered}
12-\frac{1}{3} x=0 \\
-\frac{1}{3} x=-12 \\
x=36
\end{gathered}
$$

Since $y=0$ at this point, the bottom point of intersection is $(36,0)$.

